Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Distance covariance is a popular dependence measure for two random vectors $$X$$ and $$Y$$ of possibly different dimensions and types. Recent years have witnessed concentrated efforts in the literature to understand the distributional properties of the sample distance covariance in a high-dimensional setting, with an exclusive emphasis on the null case that $$X$$ and $$Y$$ are independent. This paper derives the first non-null central limit theorem for the sample distance covariance, and the more general sample (Hilbert–Schmidt) kernel distance covariance in high dimensions, in the distributional class of $(X,Y)$ with a separable covariance structure. The new non-null central limit theorem yields an asymptotically exact first-order power formula for the widely used generalized kernel distance correlation test of independence between $$X$$ and $$Y$$. The power formula in particular unveils an interesting universality phenomenon: the power of the generalized kernel distance correlation test is completely determined by $$n\cdot \operatorname{dCor}^{2}(X,Y)/\sqrt{2}$$ in the high-dimensional limit, regardless of a wide range of choices of the kernels and bandwidth parameters. Furthermore, this separation rate is also shown to be optimal in a minimax sense. The key step in the proof of the non-null central limit theorem is a precise expansion of the mean and variance of the sample distance covariance in high dimensions, which shows, among other things, that the non-null Gaussian approximation of the sample distance covariance involves a rather subtle interplay between the dimension-to-sample ratio and the dependence between $$X$$ and $$Y$$.more » « less
-
Abstract The Bradley–Terry–Luce (BTL) model is a benchmark model for pairwise comparisons between individuals. Despite recent progress on the first-order asymptotics of several popular procedures, the understanding of uncertainty quantification in the BTL model remains largely incomplete, especially when the underlying comparison graph is sparse. In this paper, we fill this gap by focusing on two estimators that have received much recent attention: the maximum likelihood estimator (MLE) and the spectral estimator. Using a unified proof strategy, we derive sharp and uniform non-asymptotic expansions for both estimators in the sparsest possible regime (up to some poly-logarithmic factors) of the underlying comparison graph. These expansions allow us to obtain: (i) finite-dimensional central limit theorems for both estimators; (ii) construction of confidence intervals for individual ranks; (iii) optimal constant of $$\ell _2$$ estimation, which is achieved by the MLE but not by the spectral estimator. Our proof is based on a self-consistent equation of the second-order remainder vector and a novel leave-two-out analysis.more » « less
An official website of the United States government

Full Text Available